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Motivating Example: The ENGAGE Study

Patients with alcohol- and cocaine-related substance use
disorders often disengage from treatment at high rates. How
should clinicians best re-engage them?

For these individuals, should we attempt to re-engage them in
their original treatment, or o�er them a choice of treatment
modality?

What do we do if that doesn’t work?

This is a question about a sequence of treatments.

. McKay, J. R., et al. (2015). Journal of Consulting and Clinical Psychology.
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Dynamic Treatment Regimens

Dynamic treatment regimens (DTRs) operationalize clinical
decision-making by recommending particular treatments to
certain subsets of patients at specific times.

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

• MI-IOP: 2 motivational
interviews to re-engage patient
in intensive outpatient program

• MI-PC: 2 motivational interviews
to engage patient in treatment
of their choice.

. Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.
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Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be
used to answer questions at multiple stages of the
development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants
are randomized more than once.
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Motivating Example: The ENGAGE Study

Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B

R

NFC C
Non-Engagers

During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E

R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

. McKay, J. R., et al. (2015). Journal of Consulting and Clinical Psychology.

4



Four Embedded DTRs in ENGAGE

d = 1 Stage 1 Stage 2 Subgroup
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE

d = 4 Stage 1 Stage 2 Subgroup
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Common Primary Aim: Compare Embedded DTRs at End of Study

d = 1 Stage 1 Stage 2 Subgroup

d = 3 NFC
a2R = 0 A

MI-IOP
a1 = 1

MI-PC
a2NR = 1 B

R
NFC

a2NR = −1 C
Non-Engagers

During the First
8 Weeks of IOP

R

NFC
a2R = 0 D

MI-PC
a1 = −1

MI-PC
a2NR = 1 E

R
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a2NR = −1 F
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Engagers

Continued
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Engagers

Continued
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Our goal
is to develop a sample size formula for the comparison of two
embedded DTRs at the end of the study using a longitudinal
outcome collected at an arbitrary number of timepoints.
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Example Model: Continuous Longitudinal Outcome in ENGAGE

t

E
[Y

(d
)

t
]

0 4 8 (t∗) 12 24

0
10

20
30

40

d = 1 d = 2 d = 3 d = 4

a1 1 1 -1 -1
a2R 0 0 0 0
a2NR 1 -1 1 -1

E
[
Y(d)
t | X

]
:= µ(d)(β)

= β0

+ 1
{
t ≤ t∗

}
{β1t+ β2a1t}

+ 1
{
t > t∗

}{
t∗β1 + t∗β2a1

+ β3(t− t∗) + β4(t− t∗)a1

+ β5(t− t∗)a2NR

+ β6(t− t∗)a1a2NR
}

. Lu, X., et al. (2016). Statistics in Medicine.
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“GEE-Type” Estimating Equations for Model Parameters

0 =
N∑
i=1

∑
d

[
I(d)(A1,i,Ri, A2,i)

P(A1,i = a1)P(A2,i = a2 | A1,i = a1,Ri)︸ ︷︷ ︸
W(d)(A1,i,Ri,A2,i)

·
(
D(d)

)>
· V(d) (τ )−1 ·

(
Yi − µ(d)(β)

)]
,

• d specifies an embedded DTR,
• I(d)(A1,i,Ri, A2,i) = 1

{
A1,i = a1

}(
Ri + (1− Ri)1

{
A2,i = a2

})
• D(d) = ∂

∂β>µ(d)(β)

• V(d) (τ ) is a working model for Var
(
Y(d) − µ(d)(β)

)
. Lu, X., et al. (2016). Statistics in Medicine.
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Goal

Goal: Develop a tractable sample size formula for the test

H0 : E
[
Y(d=1)
T − Y(d=3)

T

]
= 0 vs. H1 : E

[
Y(d=1)
T − Y(d=3)

T

]
= ∆.

Under our example model,

E
[
Y(d=1)
T − Y(d=3)

T

]
= c>β

We use a 1-degree of freedom (asymptotic) Wald test with test
statistic

Z =

√
nc>β̂
σc

,

where σc = c>Var
(
β̂
)
c.
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Sample Size for an End-of-Study Comparison

Under mild working assumptions, exchangeable within-person
correlation, and constant variance across time and DTRs:

N ≥
4
(
z1−α/2 + z1−γ

)2

δ2 ·
(
2− P(Ri = 1)

)
· f (ρ, T2, T)

• δ = ∆/σ = E[Y(d)
T − Y

(d′)
T ]/

√(
Var(Y(d)

T ) + Var(Y(d′)
T )

)
/2 is the target

standardized e�ect size
• α is the desired type-I error
• 1− γ is the desired power
• ρ = cor(Yt, Yt′ ) for t 6= t′

• T is the total number of measurement occasions
• T2 is the number of measurement occasions in stage 2
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Sample Size for an End-of-Study Comparison

Under mild working assumptions, exchangeable within-person
correlation, and constant variance across time and DTRs:

N ≥
4
(
z1−α/2 + z1−γ

)2

δ2 ·
(
2− P(Ri = 1)

)
· f (ρ, T2, T)︸ ︷︷ ︸
Deflation: longitudinal outcome

Long-Term Goal: Understand tradeo�s between N, T2, and T to
maximize power subject to a budget constraint.
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Special Case: 3 timepoints simplifies nicely

Stage 1 Stage 2

R R

t1 t∗ tT

T1 = 2 T2 = 1

f (ρ, 1, 3) = (1− ρ2)

. Seewald, N. J., et al. (2019). Statistical Methods in Medical Research.
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One strategy is to add timepoints in both stages of the SMART

Stage 1 Stage 2

R R

t1 t∗ tT

T1 = 3 T2 = 2
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Understanding f (ρ, T2, T): Increase T, fix T2 = bT/2c

Increasing T increases power.
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Do we benefit from unequal distribution of timepoints?

Stage 1 Stage 2

R R

t1 t∗ tT

T1 = 4 T2 = 1
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Do we benefit from unequal distribution of timepoints?

Stage 1 Stage 2

R R

t1 t∗ tT

T1 = 2 T2 = 3

15



Understanding f (ρ, T2, T): Fix T = 7, increase T2

f (ρ, T2, T) becomes non-monotone in ρ as T2 increases; adding
measurements matters less as ρ increases.
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Coming Soon

• A work in progress!
• Still to Come:

• User-friendly sample size tool: f (ρ, T2, T) is somewhat
complex

• Guidance on balancing N and T subject to a budget
constraint

• Intuition behind non-monotone relationship between
sample size and ρ
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