
Hi, my name’s Nick Seewald, I’m a Ph.D. candidate in statistics at the University of Michigan, and I’ll be 
talking about sample size and timepoint tradeoffs for comparing dynamic treatment regimens in a 
longitudinal SMART. This work is joint with my advisor, Danny Almirall. 

I want to start with a motivating example from the field of addiction research. It’s well-known that it’s 
hard to engage individuals with alcohol- or cocaine-related substance use disorders in treatments. These 
interventions are effective, so clinicians really want these patients to re-engage with them after they’ve 
disengaged. How should they do that? Should the strategy be to try and get them back into the original 
treatment, or should they give the patient some autonomy and offer them a choice of treatment 
modality? 

For some people, these re-engagement strategies will work, but others will continue to not engage. 
Obviously we’d like to get them into treatment, so we want to follow-up with something for those folks 
who are continued non-engagers.  

So this is a question about a sequence of treatments that is adapting to the individual over time, and this 
is often how clinical decision-making works. A dynamic treatment regimen operationalizes this clinical 
decision-making process by recommending specific treatments to certain subsets of individuals at 
specific times. Here’s an example dynamic treatment regimen: 

- Initially, this dynamic treatment regimen recommends that patients receive an intervention 
we’re abbreviating as “MI-IOP”, which stands for motivational interviews with a focus on an 
intensive outpatient program. This is basically two phone calls geared toward getting the patient 
back into their original treatment program.  

- Then, if the participant sufficiently engages in the program according to some pre-specified 
criteria, the dynamic treatment regimen recommends no further contact for that individual: if it 
ain’t broke, don’t fix it. 

- However, if the patient does not meet the criteria for sufficient engagement, the dynamic 
treatment regimen recommends a second intervention abbreviated “MI-PC”, which stands for 
motivational interview with patient choice. Here, the participant is given a second set of phone 
calls, this time focusing on engaging them in a substance use treatment modality of their 
choosing. 

- Notice that the dynamic treatment regimen makes recommendations for both engagers and 
continued non-engagers: it tailors subsequent treatment according to engagement status. 

We can address scientific questions about how to construct a high-quality dynamic treatment regimen 
using a sequential multiple-assignment randomized trial, or SMART. A SMART is just one type of 
randomized trial that can answer these questions. The key feature of a SMART is that some or all 
participants are randomized more than once. 

Let’s take a look at an example. This is a study called ENGAGE. The PI is Jim McKay, who’s at UPenn. In 
the trial, 500 individuals with an alcohol- and or cocaine-related substance use disorder who did not 
sufficiently engage in the first 8 weeks of an intensive outpatient program. These folks were randomized 
between MI-IOP and MI-PC, then followed for another 8 weeks, at which point they were determined to 
have either sufficiently engaged, or continued to not engage. This was determined using prespecified 
attendance criteria. Everyone who engaged was given no further contact (but still followed for research 
outcomes). All continued non-engagers were randomized a second time, between MI-PC and no further 



contact. Everyone was followed for a total of 24 weeks. Over the course of the study, a (for our 
purposes) continuous outcome called “treatment readiness”, a measure of a participant’s willingness 
and ability to engage in treatment, was measured at baseline and weeks 4, 8, 12, and 24. 

You may have noticed that there are dynamic treatment regimens embedded in the SMART. There are 
four such embedded regimens. Here’s the one we saw earlier, which recommends MI-IOP initially, then 
no further contact for engagers and MI-PC for continued non-engagers. Individuals who end up in 
subgroups A and B at the end of the trial are “consistent” with this regimen. Similarly, here’s another 
embedded regimen, and another, and another.  

There are two things I want to point out here: The first is that engagers are consistent with two 
embedded DTRs, whereas non-engagers are only consistent with one. Notice that subgroup D lights up 
in both blue and yellow; subgroups E and F light up only once. The second point is that engagers are only 
randomized once, whereas non-engagers are randomized twice. Both things need to be accounted for in 
our analysis of the data which arise from this trial. 

Our goal is to develop a sample size formula for the comparison of two embedded DTRs at the end of 
the study using a longitudinal outcome collected at an arbitrary number of timepoints. 

Because sample size is chosen for a specific analysis, we need to talk about modeling. Here’s one way to 
model data in a longitudinal SMART. This is a piecewise-linear model which reflects the sequential 
nature of treatment delivery in a SMART. At baseline, we don’t expect individuals to differ by assigned 
treatment, so there’s one mean. Between times 0 and 8, there are two groups: one for each first-stage 
treatment. After time 8, there are now four groups: one for each embedded dynamic treatment 
regimen. Notice that this model is marginal over engagement status, since the regimens recommend 
treatment for both engagers and continued non-engagers.  

Remember that our primary aim is a comparison of the purple line to the blue line at week 24. 

So how do we fit the model? We use GEE-type estimating equations. You’ll see why I say GEE type in just 
a second. If we start down at the end of the second line, we’ve got our usual vector of residuals, a 
working covariance matrix, and the Jacobian of our model, just like usual GEE. The top line is where 
things get slightly different. We’re now adding an inverse-probability weight to account for the fact that 
engagers are randomized once, whereas non-engagers are randomized twice. The weight also includes 
an indicator that specifies whether a particular individual is consistent with a given embedded dynamic 
treatment regimen. We’re now also summing over those embedded regimens, to capture the fact that 
engagers are consistent with two, and non-engagers are only consistent with one DTR each. 

So. Let’s more formally state our goal. We want to develop a tractable sample size formula for the test 
of whether the expected difference in potential outcomes between two embedded DTRs at the end of 
the study is zero, against some fixed alternative, Δ. The superscript here denotes the potential outcome 
under a particular DTR. Using the model we saw earlier, we can write this estimand as a linear 
combination of our model parameters, which are asymptotically normal. So, we can just use an 
asymptotic Z test for this comparison, using the sandwich variance of the regression parameters beta-
hat. The challenge here is to get a tractable upper bound on that variance.  

Under some mild working assumptions and an exchangeable within-person covariance structure with 
constant variance across time and regimen, this is our sample size formula. It can be decomposed into 



three parts. The first is the standard sample size formula for a two-arm RCT. 𝛿𝛿 is the target standardized 
effect size, determined in part by the fixed alternative hypothesis from earlier. 1 − 𝛾𝛾 is the target 
power. The second term is an inflation factor associated with our SMART design. 𝑅𝑅, here, is an indicator 
of whether an individual engaged with first-stage treatment. This term ranges from 1 – 2, and can be 
thought of as trading off between a 2-arm trial (if everyone’s an engager, nobody’s re-randomized), and 
a 4-arm trial (if everyone’s a non-engager, everyone’s re-randomized). Finally, we have a deflation factor 
associated with the longitudinal outcome. Note that this is a deflation factor, since we have within-
person correlation and we’re making a between-groups comparison. The deflation factor depends on 
the strength of the within-person correlation, 𝜌𝜌, the number of measurement occasions in stage 2, 𝑇𝑇2, 
and the total number of measurement occasions in the trial, 𝑇𝑇. Our long-term goal for this project is to 
understand how to trade off between the sample size, 𝑇𝑇2, and 𝑇𝑇 in order to maximize power subject to a 
budget constraint. 

In the special case of 3 timepoints: one at baseline, one at the end of the first stage, and one at the end 
of the second stage, our deflation factor reduces to 1 − 𝜌𝜌2. This is exactly the deflation factor you’d see 
in a two-arm pre-post RCT when you don’t model a difference in means at baseline. This work is 
published in Statistical Methods in Medical Research.  

One strategy for generalizing the number of timepoints is to add measurements equally in both stages 
of the SMART. Let’s see what happens to our sample size requirement using this strategy. 

Here’s a plot of the deflation factor on the y axis versus the within-person correlation 𝜌𝜌 on the x axis. A 
value of 1 on the y axis corresponds to no deflation in the sample size: this is a multiplicative “effect” 
here. As we add timepoints in both stages so that the total number of measurement increases (higher 
values of 𝑇𝑇 correspond to lighter lines), we can see meaningful decreases in the deflation factor: more 
measurement occasions gets us more power, but the impact lessens for large values of 𝜌𝜌. 

Now we might ask what happens when we distribute timepoints unequally across the stages of the trial. 
So we could put more in stage 1 than in stage 2, or more in stage 2 than stage 1. Let’s see what happens 
when, with a fixed number of timepoints in the whole study, we move measurements between stage 1 
and stage 2.  

So here we’re looking at a total 7 timepoints in the whole study, and increasing 𝑇𝑇2, the number of 
timepoints in stage 2 of the SMART. Again, the y-axis on these plots is the deflation factor, so 1 
corresponds with no benefit in terms of sample size. On the left, the x axis is again 𝜌𝜌, and this dashed 
line is 1 − 𝜌𝜌2, the deflation factor for a 3-timepoint SMART. As we shift more measurements into the 
second stage, we see noticeable drops in the deflation factor (so, more power), for small 𝜌𝜌. For larger 
values of 𝜌𝜌, it doesn’t matter much. We can see that more clearly in the plot on the right. Here, the x-
axis is now 𝑇𝑇2 and the lines represent different values of 𝜌𝜌. As 𝜌𝜌 increases, the lines get flatter, 
indicating that shifting timepoints into stage 2 has less impact on power. Curiously, there’s some non-
monotonicity happening here. When 𝑇𝑇2 is large, small values of 𝜌𝜌 slightly hurt you. We don’t quite have 
intuition for that yet. 

Wrapping up, this is a work in progress. We’re in the process of building a user-friendly sample size tool 
that can abstract away some complexity in the functional form of the deflation factor for non-statistical 
folks, and we’re still working on developing guidance for how to balance sample size and timepoints 



subject to a cost-constraint. We’re also still thinking about that non-monotonicity in the relationship 
between the deflation factor and 𝜌𝜌 for large values of 𝑇𝑇2.  

As I mentioned earlier, the special case of 3 timepoints has appeared in Statistical Methods in Medical 
Research; the author accepted manuscript is also on the ArXiv. Finally, I’d like to acknowledge funding 
from the NIH and the Institute of Education Sciences, and you can find slides and other resources on my 
website, nickseewald.com. Thanks so much for stopping by, and enjoy the rest of JSM. 


