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Individual-Level Data in Health Policy Evaluation

Many health policy evaluations start with individual-level data (e.g., insurance claims)

• Allows outcome or covariate construction

• Allows more choices about population of interest

• Continuous enrollment requirements, samples with certain diagnoses, etc.

But many methods use/require aggregated data. Is that okay?
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Individual-Level Data is Better, Right?

Intuition suggests that individual-level data would be better than aggregated data:

• More data is more information

• Adjust for individual-level confounding

• Appropriately account for nuanced functional forms

But “treatment” is at the state level.
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DoMedical Cannabis Laws Change Opioid Prescribing?

• Cannabis is a potentially effective treatment for chronic non-cancer pain, but

evidence is limited.

• Patients with chronic non-cancer pain are eligible to use cannabis under all

existing state medical cannabis laws

• Some evidence of substitution among adults with chronic non-cancer pain

Question: What are the effects of state medical cannabis laws on receipt of opioid

and non-opioid treatment among patients with chronic non-cancer pain?

Bicket, M. C., Stone, E. M., and McGinty, E. E. (2023). JAMA Network Open.
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Medical Cannabis Study: Data

Data are individual-level commercial health insurance claims.

• Individuals included if they have a chronic non-cancer pain diagnosis in the

pre-law period and are continuously enrolled in commercial health insurance for

the full study period.

We have rich data on individual outcome trajectories, and think we should use it!
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State-Time Aggregation

stats::aggregate(Y ∼ state + time, data, mean)
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Questions

1. Are difference-in-differences analyses using individual-level datamore efficient

than those using aggregate-level data?

2. Does individual-level data allow for better control of confounding?
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Simulation Study: Generative Model

Idea: Simulate data from a simple but flexible data generative model and analyze

using various approaches.

Ysit = β0 + β1tβ2Ast + β3(tk − t∗)+Ast + η⊤Xsit + γ⊤XsitAst

+ b0,s + b0,si + b0,st + εsit

• Ast = 1{state s is treated at time t}
• t∗ is the first post-treatment timepoint

• Xsit is a vector of covariates

• b0,s, b0,si, b0,st are state-, person-, and time-level random intercepts
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Simulation Study: Generative Model

Idea: Simulate data from a simple but flexible data generative model and analyze

using various approaches.

Ysit = β0 + β1tβ2Ast + β3(tk − t∗)+Ast + η⊤Xsit + γ⊤XsitAst

+ b0,s + b0,si + b0,st + εsit

• Random effects induce three distinct correlations:

• Within-person correlation
• Within-period correlation
• Between-period correlation

• Time-varying treatment effects and effect heterogeneity are allowed

• Necessarily simpler than real data!
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Simulation Study: Setting

Current focus has been on limited but common settings

• Continuously-enrolled sample (i.e., no changing case mix)

• Balanced panels

• Simultaneous treatment adoption

• Similar number of treated and control states (Rokicki et al. 2018)

Analytic approaches considered are “naive”

Rokicki, S. et al. (2018). Medical Care.
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Question 1: Do we lose information in

aggregated analyses?



A preview: OLS

OLS estimators are identical for individual- and aggregate-level data in a two-way

fixed effects model

Individual-level model:

Ysit = β0,s + β1,t + β2Ast + εsit

Aggregate-level model:

Ys·t = β0,s + β1,t + β2Āst + εst

Differences might arise from clustering standard errors or introducing covariates.
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Clustered Standard Errors, No Covariates

Moderate within- and between-person correlation: ICCperson = 0.5, ICCstate = 0.4.

2000 simulations, 500 individuals per state

Bias SE 95% Coverage

Individual data, OLS SE 0.000 0.014 0.971

Individual data, person-clustered SE 0.000 0.013 0.955

Individual data, state-clustered SE 0.000 0.012 0.928

Aggregate data, OLS SE 0.000 0.013 0.953

Aggregate data, state-clustered SE 0.000 0.013 0.954
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Question 2: Do individual-level

models allow better control of

confounding?



Confounding in Difference-in-Differences

“Only covariates that differ by treatment group and are associated with outcome

trends are confounders in diff-in-diff.”

• Time-invariant covariates are confounders if they have time-varying effects on

the outcome

• Time-varying covariates are confounders if they have time-varying effects on

the outcome or evolve differently in treated and control groups.

Zeldow, B. and Hatfield, L. A. (2021). Health Services Research.
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Time-Invariant Covariate, Time-Invariant Effect

Ysit = β0 + β1t+ β2Ast + β3Xsi + b0,s + b0,si + ϵsit

Bias SE RMSE 95% Coverage

Individual, unadj., OLS SE 0.000 0.030 0.013 1.000
Individual, unadj., person-clustered SE 0.000 0.013 0.013 0.942
Individual, unadj., state-clustered SE 0.000 0.012 0.013 0.922

Individual, adj., OLS SE 0.000 0.014 0.013 0.965
Individual, adj., person-clustered SE 0.000 0.013 0.013 0.942
Individual, adj., state-clustered SE 0.000 0.012 0.013 0.922

Aggregated, unadj., OLS SE 0.000 0.013 0.013 0.942
Aggregated, unadj., state-clustered SE 0.000 0.013 0.013 0.945
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Time-Invariant Covariate, Time-Varying Effect

Ysit = β0 + β1t+ β2Ast + β3Xsi + β4tXsi + b0,s + b0,si + ϵsit

Bias SE RMSE 95% Coverage

Individual, unadj., OLS SE 5.182 0.043 5.182 0.000
Individual, unadj., person-clustered SE 5.182 0.075 5.182 0.000
Individual, unadj., state-clustered SE 5.182 1.410 5.182 0.000

Individual, adj., OLS SE 0.000 0.027 0.015 0.999
Individual, adj., person-clustered SE 0.000 0.015 0.015 0.959
Individual, adj., state-clustered SE 0.000 0.015 0.015 0.917

Aggregated, unadj., OLS SE 0.000 0.017 0.016 0.954
Aggregated, unadj., state-clustered SE 0.000 0.017 0.016 0.930
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Time-Varying Covariate, Time-Invariant Effect

Ysit = β0 + β1t+ β2Ast + β3Xsi + β4Xsit + b0,s + b0,si + ϵsit Xsi ∼ N (µ,Σ)

Bias SE RMSE 95% Coverage

Individual, unadj., OLS SE 0.000 0.025 0.024 0.963

Individual, unadj., person-clustered SE 0.000 0.018 0.024 0.833

Individual, unadj., state-clustered SE 0.000 0.024 0.024 0.934

Individual, adj., OLS SE 0.000 0.022 0.013 0.999

Individual, adj., person-clustered SE 0.000 0.013 0.013 0.958

Individual, adj., state-clustered SE 0.000 0.012 0.013 0.934

Aggregated, unadj., OLS SE 0.000 0.025 0.024 0.962

Aggregated, unadj., state-clustered SE 0.000 0.026 0.024 0.960

Aggregated, adj., OLS SE 0.000 0.013 0.013 0.956

Aggregated, adj., state-clustered SE 0.000 0.013 0.013 0.962N.J. Seewald 15



Time-Varying Covariate, Time-Varying Effect

Ysit = β0 + β1t+ β2Ast + β3Xsi + β4tXsit + b0,s + b0,si + ϵsit Xsit is linear in time

Bias SE RMSE 95% Coverage

Individual, unadj., OLS SE 9.949 0.037 9.949 0.000

Individual, unadj., person-clustered SE 9.949 0.018 9.949 0.000

Individual, unadj., state-clustered SE 9.949 0.024 9.949 0.000

Individual, adj., OLS SE -0.001 0.059 0.082 0.845

Individual, adj., person-clustered SE -0.001 0.081 0.082 0.940

Individual, adj., state-clustered SE -0.001 0.079 0.082 0.935

Aggregated, unadj., OLS SE 9.949 0.071 9.949 0.000

Aggregated, unadj., state-clustered SE 9.949 0.215 9.949 0.000

Aggregated, adj., OLS SE 0.005 0.146 0.145 0.956

Aggregated, adj., state-clustered SE 0.005 0.133 0.145 0.895N.J. Seewald 16



Results

What we’ve seen so far:

• Differences in efficiency, if they exist, are small

• Seemingly quite similar bias control

• Individual-level data is harder to work with than aggregated data

• Individual-level data might be better if you’re adjusting for complicated

time-varying confounders
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Conclusions

We think this is a question of design vs. analysis.

• Individual-level data is incredibly useful in the design stage of a policy
evaluation!

• Better sample identification, feature construction, outcome construction, etc.

• In the analysis stage (with diff-in-diff), aggregate-level data is more ergonomic

and seems more or less the same.
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