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Motivating Example: The ENGAGE Study

Patients with alcohol- and cocaine-related substance use disorders often
disengage from treatment at high rates. How should clinicians best re-engage
them?

For these individuals, should we attempt to re-engage them in their original
treatment, or offer them a choice of treatment modality?

What do we do if that doesn’t work?

This is a question about a sequence of treatments.

. McKay, J. R., et al. (2015). Journal of Consulting and Clinical Psychology.
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Dynamic Treatment Regimens

Dynamic treatment regimens (DTRs) operationalize clinical decision-making by
recommending particular treatments to certain subsets of patients at specific
times.

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

• MI-IOP: 2 motivational interviews to
re-engage patient in intensive outpatient
program

• MI-PC: 2 motivational interviews to engage
patient in treatment of their choice.

. Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.
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Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be used to answer
questions at multiple stages of the development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants are randomized
more than once.
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Motivating Example: The ENGAGE Study
Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B

R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E

R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

. McKay, J. R., et al. (2015). Journal of Consulting and Clinical Psychology.
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Four Embedded DTRs in ENGAGE
d = 1 Stage 1 Stage 2 Subgroup
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
d = 4 Stage 1 Stage 2 Subgroup
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Common Primary Aim: Compare Embedded DTRs at End of Study

d = 1 Stage 1 Stage 2 Subgroup

d = 3 NFC
a2R = 0 A

MI-IOP
a1 = 1

MI-PC
a2NR = 1 B

R
NFC

a2NR = −1 C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC
a2R = 0 D

MI-PC
a1 = −1

MI-PC
a2NR = 1 E

R
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a2NR = −1 F
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Continued
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Continued
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Our goal
is to develop a sample size formula for the comparison of two embedded DTRs
at the end of the study using a longitudinal outcome collected at an arbitrary
number of timepoints.
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Example Model: Continuous Longitudinal Outcome in ENGAGE

t

E
[Y

(d
)

t
]

0 4 8 (t∗) 12 24

0
10

20
30

40

d = 1 d = 2 d = 3 d = 4

a1 1 1 -1 -1
a2R 0 0 0 0
a2NR 1 -1 1 -1

E
[
Y(d)t | X

]
:= µ(d)(β)

= β0

+ 1
{
t ≤ t∗

}
{β1t+ β2a1t}

+ 1
{
t > t∗

}{
t∗β1 + t∗β2a1

+ β3(t− t∗) + β4(t− t∗)a1
+ β5(t− t∗)a2NR
+ β6(t− t∗)a1a2NR

}
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“GEE-Type” Estimating Equations for Model Parameters

0 =
N∑
i=1

∑
d

[ W(d)(A1,i,Ri,A2,i)︷ ︸︸ ︷
I(d)(A1,i,Ri, A2,i)

P(A1,i = a1)P(A2,i = a2 | A1,i = a1,Ri)

·
(
D(d)

)⊤
· V(d) (τ )−1 ·

(
Yi − µ(d)(β)

)]
,

• d specifies an embedded DTR,
• I(d)(A1,i,Ri, A2,i) = 1

{
A1,i = a1

}(
Ri + (1− Ri)1

{
A2,i = a2

})
• D(d) = ∂

∂β⊤µ(d)(β)

• V(d) (τ ) is a working model for Var
(
Y(d) − µ(d)(β)

)
. Lu, X., et al. (2016). Statistics in Medicine. 9



Goal

Goal: Develop a tractable sample size formula for the test

H0 : E
[
Y(d=1)T − Y(d=3)T

]
= 0 vs. H1 : E

[
Y(d=1)T − Y(d=3)T

]
= ∆.

Under our example model,

E
[
Y(d=1)T − Y(d=3)T

]
= c⊤β

We use a 1-degree of freedom (asymptotic) Wald test with test statistic

Z =

√
nc⊤β̂
σc

,

where σc = c⊤Var
(
β̂
)
c.
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Sample Size for an End-of-Study Comparison

Under mild working assumptions, exchangeable within-person correlation, and
constant variance across time and DTRs:

N ≥
4
(
z1−α/2 + z1−γ

)2
δ2

·
(
2− P(Ri = 1)

)
· ω(ρ, t, T2)

• δ = ∆/σ = E[Y(d)T − Y(d
′)

T ]/

√(
Var(Y(d)T ) + Var(Y(d

′)
T )

)
/2 is the target standardized effect size

• α is the desired type-I error
• 1− γ is the desired power
• ρ = cor(Yt, Yt′ ) for t ̸= t′

• t is a vector of measurement times
• T2 is the number of measurements in stage 2 11
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Special Case: 3 timepoints simplifies nicely

Stage 1 Stage 2

R R

t1 t∗ tT

T1 = 2 T2 = 1

ω(ρ, 1, 3) = (1− ρ2)

. Seewald, N. J., et al. (2020). Statistical Methods in Medical Research.
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Understanding ω(ρ, t, T2): Increase T, fix T2 = ⌊T/2⌋

Increasing T decreases sample size requirements (with diminishing returns). 13



Big Question:
Given a fixed N, T, and ρ, how do we allocate measurements across stages of the
SMART in order to maximize power?

For simplicity, consider equally-spaced measurements throughout the trial.

Minimum of 2 measurements in stage 1 (baseline, before re-randomization)
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Choosing T2 to maximize power
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Choosing T2 = T− 2 is sub-optimal for large ρ with large T

With equally-spaced measurements,

• For low ρ and/or low T, put as many measurements in stage 2 as possible.
• At low ρ, power gains are likely from better modeling the linear trend in stage 2

• For higher ρ and/or higher T, diminishing returns of more measurements in
stage 2
• At high ρ, more information per measurement; share the love with stage 1

• Difficult to identify exactly what “low ρ” and “high T” mean, since ω(ρ, t, T2) is
complicated.
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A brief discussion of budget constraints

A work in progress! Inspired by Zhang and Ahn (2011)
Setup
• Total budget B
• Cost CR of recruiting one participant
• Cost CM of measuring outcome per participant
• Assume equally-spaced measurements across stages

Budget Constraint
Choose N, T, T2 to maximize power such that

NCR + NTCM ≤ B.

. Zhang, S., and C. Ahn (2011). Statistics in Biopharmaceutical Research.
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Extremely preliminary numerical results

Exch. Correlation

CR/CM ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

1 3 3 3 3
10 13 9 7 6
25 15 15 12 10
50 15 15 15 15

Notes:
• Set T2 = T− 2
• Considering T ≤ 15 for all scenarios
• For chosen T, use maximum-affordable N

18



Summary and Recap

• Interpretable sample size formula for end-of-study comparisons of
embedded DTRs using a continuous longitudinal outcome
• Depends on ρ and measurement times

• Optimal allocation of measurements favors stage 2
• Budget constraint seems to have little middle ground
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Coming Soon

• A work in progress!
• Still to Come:

• User-friendly sample size tool: ω(ρ, t, T2) is complicated
• Software for helping clinicians optimize N, T, T2 within a budget

20



Sample Size Considerations for 3 Measurements

arXiv:1810.13094 [stat.ME]
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