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Motivating Example: The ENGAGE Study

Patients with alcohol- and cocaine-related substance use
disorders often disengage from treatment at high rates. How
should clinicians best re-engage them?

For these individuals, should we attempt to re-engage them in
their original treatment, or o�er them a choice of treatment
modality?

What do we do if that doesn’t work?

This is a question about a sequence of treatments.

. McKay, J. R., et al. (2015). Journal of Consulting and Clinical Psychology.
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Dynamic Treatment Regimens

Dynamic treatment regimens (DTRs) operationalize clinical
decision-making by recommending particular treatments to
certain subsets of patients at specific times.

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

• MI-IOP: 2 motivational
interviews to re-engage patient
in intensive outpatient program

• MI-PC: 2 motivational interviews
to engage patient in treatment
of their choice.

. Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.
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Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be
used to answer questions at multiple stages of the
development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants
are randomized more than once.
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Motivating Example: The ENGAGE Study
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. McKay, J. R., et al. (2015). Journal of Consulting and Clinical Psychology.
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
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Primary Aim

d = 1 Stage 1 Stage 2 Subgroup
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Example Model: Continuous Longitudinal Outcome in ENGAGE

t

E
[Y

(d
)

t
]

0 4 8 (t∗) 12 24
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d = 1 d = 2 d = 3 d = 4

a1 1 1 -1 -1
a2R 0 0 0 0
a2NR 1 -1 1 -1

E
[
Y(d)t | X

]
:= µ(d)(β)

= β0

+ 1
{
t ≤ t∗

}
{β1t+ β2a1t}

+ 1
{
t > t∗

}{
t∗β1 + t∗β2a1

+ β3(t− t∗) + β4(t− t∗)a1

+ β5(t− t∗)a2NR

+ β6(t− t∗)a1a2NR
}

. Lu, X., et al. (2016). Statistics in Medicine.
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“GEE-Type” Estimating Equations for Model Parameters

0 =
N∑
i=1

∑
d

[
I(d)(A1,i,Ri, A2,i)

P(A1,i = a1)P(A2,i = a2 | A1,i = a1,Ri)︸ ︷︷ ︸
W(d)(A1,i,Ri,A2,i)

·
(
D(d)

)>
· V(d) (τ )−1 ·

(
Yi − µ(d)(β)

)]
,

• d specifies an embedded DTR,
• I(d)(A1,i,Ri, A2,i) = 1

{
A1,i = a1

}(
Ri + (1− Ri)1

{
A2,i = a2

})
• D(d) = ∂

∂β>µ(d)(β)

• V(d) (τ ) is a working model for Var
(
Y(d) − µ(d)(β)

)
. Lu, X., et al. (2016). Statistics in Medicine.
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Variance of Parameter Estimates

• Call the solution to the estimating equations β̂

• Under usual regularity conditions:
• β̂

p→ β∗

•
√
n
(
β̂ − β∗

)
⇒ N

(
0,B−1MB−1)

where

B := E

∑
d∈D

W(d) (A1,R,A2)
(
D(d)

)> (
V(d)(τ )

)−1
D(d)



M := E


∑
d∈D

W(d)
(
A1,i,Ri,A2,i

)(
D(d)

)> (
V(d)(τ )

)−1 (
Y − µ(d)(θ)

)⊗2


. Vaart, A. W. van der (1998). Asymptotic statistics.
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Goal

Goal: Develop a tractable sample size formula for the test

H0 : c>β = 0 vs. H1 : c>β = ∆

We choose c such that

c>β = E

[
Y(1,a2R,a2NR)
T − Y(−1,a′2R,a

′
2NR)

T

]
We use a 1-degree of freedom (asymptotic) Wald test with test
statistic

Z =

√
nc>β̂
σc

,

where σc = c>B−1MB−1.
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Sample Size for an End-of-Study Comparison

Three timepoints, exchangeable correlation structure:

N ≥
4
(
z1−α/2 + z1−γ

)2

δ2 · (1− ρ2) ·
(
2− P(Ri = 1)

)

• δ = E[Y(d)
T − Y

(d′)
T ]/

√(
Var(Y(d)

T ) + Var(Y(d′)
T )

)
/2 is the targeted

standardized e�ect size
• α is the desired type-I error
• 1− γ is the desired power
• ρ = cor(Yt, Yt′) for t 6= t′

. Seewald, N. J., et al. (2019). Statistical Methods in Medical Research. 11
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Sample Size for an End-of-Study Comparison

Table 1: Example sample sizes for comparison of two embedded
DTRs. r = 0.4, α = 0.05 (two-sided), and 1− γ = 0.8.

Within-Person Correlation

Std. E�ect Size ρ = 0 ρ = 0.3 ρ = 0.6

δ = 0.3 559 508 358
δ = 0.5 201 183 129
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Preliminary Results for Adding Timepoints in Stage 2
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Sample size multiplier vs. Exchangeable ρ, assuming P(R=1)=0.3. m2
is num. timepoints after second randomization.
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Extension to More than Three Timepoints

• A work in progress!
• Challenges:

• When should we add timepoints? First stage? Second
stage? Both?

• Working assumptions needed for partial ordering on
variance matrices

• Intuition behind non-monotone relationship between
sample size and ρ
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