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“Ignorance of whether or how to change psychotherapies is amajor and per-
sisting gap in psychiatric knowledge.”

J. C. Markowitz and B. L. Milrod. “What to Do
When a Psychotherapy Fails”. In: The Lancet
Psychiatry 2.2 (2015), pp. 186–190
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Motivating Example: The ENGAGE Study

Patients with alcohol- and cocaine-related substance use disorders often disengage
from treatment at high rates. How should clinicians best re-engage them?

For these individuals, should we attempt to re-engage them in their original treatment,
or offer them a choice of treatment modality?

What do we do if that doesn’t work?

This is a question about a sequence of treatments.

McKay, J. R. et al. (2015). Journal of Consulting and Clinical Psychology.
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Dynamic Treatment Regimens

Dynamic treatment regimens (DTRs) operationalize clinical decision-making by
recommending particular treatments to certain subsets of patients at specific times.

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

• MI-IOP: 2 motivational interviews to re-engage
patient in intensive outpatient program

• MI-PC: 2 motivational interviews to engage
patient in treatment of their choice.

Chakraborty, B. and Moodie, E. E. M. (2013). Statistical Methods for Dynamic Treatment Regimes.
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Dynamic Treatment Regimens

Suppose we want to recommend a sequence ofM treatments, a1, . . . , aM.

Define āj =
{
a1, . . . , aj

}
Sj(āj−1) is collected after providing treatment aj−1 until just before providing aj.

…

S1 S2(a1) S3(ā2) S4(ā3)

a1 a2 a3

Define S̄j(āj−1) =
{
S1, S2(a1), . . . , Sj(āj−1)

}

Murphy, S. A. (2005). Statistics in Medicine.
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Dynamic Treatment Regimens

…

S1 S2(a1) S3(ā2) S4(ā3)

a1 a2 a3

Definition
A decision rule φj is a function of S̄j(āj−1)which outputs a recommendation for
subsequent treatment aj.

Definition
AnM-stage dynamic treatment regimen is a sequence ofM decision rules {φ1, . . . , φM}

Murphy, S. A. (2005). Statistics in Medicine.
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An Example Two-Stage DTR

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

S1 S2(a1)
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Tailoring Variables

Often, Sj(āj−1) contains information used to inform the recommendation to subsequent
treatment.
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Tailoring Variables

Often, Sj(āj−1) contains information used to inform the recommendation to subsequent
treatment.

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

R(a1) ∈ S2(a1)
R(a1) = 1 { Individual did not fail
to attend two or more IOP sessions
in one week}
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An Example Two-Stage DTR

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

S1 S2(a1)

This DTR can be written {φ1, φ2}, where

φ1 (S1) = MI-IOP

φ2
(
S̄2(a1)

)
= R · (No further contact) + (1− R) · (MI-PC)
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An Example Two-Stage DTR

No further
contact

MI-IOP

MI-PC

Engagement

Continued
non-engagement

S1 S2(a1)

More intuitively, for 2-stage DTRs, we can write {φ1, φ2} as

(a1, a2R, a2NR) = (MI-IOP, NFC, MI-PC)
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Motivating Example: The ENGAGE Study

In treating alcohol- and cocaine-dependent patients, there is a question as to how best
to re-engage individuals who do not engage in treatment.

For these individuals, should we attempt to re-engage them in their original
treatment, or offer them a choice of treatmentmodality?

What do we do if that doesn’t work?

McKay, J. R. et al. (2015). Journal of Consulting and Clinical Psychology.



11

Scientific Questions about DTRs

• Which is the more effective first-stage intervention option?

• Which is the more effective second-stage intervention option for responders?

• Which is the more effective second-stage intervention option for non-responders?

• Which of two DTRs is more effective overall?

• Which of two tailoring variables leads to better overall outcomes?

• etc.



Sequential, Multiple-Assignment
Randomized Trials
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Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be used to answer questions at
multiple stages of the development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants are randomizedmore than
once.
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Motivating Example: The ENGAGE Study

Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B
R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E
R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

McKay, J. R. et al. (2015). Journal of Consulting and Clinical Psychology.
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Four Embedded DTRs in ENGAGE

d = 1 Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B
R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E
R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers
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Four Embedded DTRs in ENGAGE

d = 2 Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B
R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E
R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers
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Four Embedded DTRs in ENGAGE

d = 3 Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B
R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E
R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers
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Four Embedded DTRs in ENGAGE

d = 4 Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B
R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E
R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers
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Other SMART Designs

Stage 1 Stage 2

C
R

D
A

E
R

F
R

G
R

H
B

I
R

J

Responders

Non-Responders

Responders

Non-Responders
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Other SMART Designs

C

D

R

E

F

G

Stage 1 Stage 2

A

B

R

Responders

Non-Responders

Responders

Non-Responders
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Common Primary Aim: Compare First-Stage Treatments in Context of a DTR

Stage 1 Stage 2 Subgroup

NFC
A2 = 0

A

MI-IOP
A1 = 1

MI-PC
A2 = 1

B

R
NFC

A2 = −1
C

Non-Engagers
During the First
8 Weeks of IOP

R

NFC
A2 = 0

D

MI-PC
A1 = −1

MI-PC
A2 = 1

E

R
NFC

A2 = −1
F

Program Entry Week 4 Week 8 Week 12 Week 24

Y

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

E
R,A2,Y

[
Y(1,·,·) − Y(−1,·,·)

]
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CommonPrimaryAim: CompareSecond-StageTreatmentsamongNon-Responders

Stage 1 Stage 2 Subgroup

NFC
A2 = 0

A

MI-IOP
A1 = 1

MI-PC
A2 = 1

B

R
NFC

A2 = −1
C

Non-Engagers
During the First
8 Weeks of IOP

R

NFC
A2 = 0

D

MI-PC
A1 = −1

MI-PC
A2 = 1

E

R
NFC

A2 = −1
F

Program Entry Week 4 Week 8 Week 12 Week 24

Y

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

E
A1,Y

[
Y(·,·,1) − Y(·,·,−1) | R = 0

]
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Common Primary Aim: Compare Embedded DTRs at End of Study

d = 1 Stage 1 Stage 2 Subgroup

d = 3
NFC

A2 = 0
A

MI-IOP
A1 = 1

MI-PC
A2 = 1

B

R
NFC

A2 = −1
C

Non-Engagers
During the First
8 Weeks of IOP

R

NFC
A2 = 0

D

MI-PC
A1 = −1

MI-PC
A2 = 1

E

R
NFC

A2 = −1
F

Program Entry Week 4 Week 8 Week 12 Week 24

Y

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers

E
R,Y

[
Y(1,0,1) − Y(−1,0,1)

]
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Common Primary Aim: Compare Embedded DTRs at End of Study

E
[
Y(1,a2R,a2NR) − Y(−1,a′2R,a

′
2NR)
]

Methods exist for comparing embedded DTRs using

• Continuous outcomes: S. A. Murphy (2005). Statistics in Medicine
A. I. Oetting et al. (2011). Causality and Psychopathology: Finding the Determinants of Disorders and
Their Cures
I. Nahum-Shani et al. (2012). Psychological Methods
S. B. Ogbagaber, J. Karp, and A. S. Wahed (2016). Statistics in Medicine

• Survival outcomes: W. Feng and A. S. Wahed (2009). Statistics in Medicine
Z. Li and S. A. Murphy (2011). Biometrika
K. M. Kidwell and A. S. Wahed (2013). Biostatistics

• Binary outcomes: K.M. Kidwell, N.J. Seewald, et al. (2018). Journal of Applied Statistics

• Clustered outcomes: T. NeCamp, A. Kilbourne, and D. Almirall (2017). Statistical Methods in Medical
Research
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Our Contribution

d = 1 Stage 1 Stage 2 Subgroup

d = 3
NFC

A2 = 0
A

MI-IOP
A1 = 1

MI-PC
A2 = 1

B

R
NFC

A2 = −1
C

Non-Engagers
During the First
8 Weeks of IOP

R

NFC
A2 = 0

D

MI-PC
A1 = −1

MI-PC
A2 = 1

E

R
NFC

A2 = −1
F

Program Entry Week 4 Week 8 Week 12 Week 24

Y1 Y2 · · · YT1 · · · YT

Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers
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Our Contribution

Develop sample size methods for SMARTs with continuous longitudinal outcomes in
which the primary aim is end-of-study comparison of two embedded DTRs which
recommend different first-stage treatments.

E
[
Y(1,a2R,a2NR)T − Y(−1,a′2R,a

′
2NR)

T

]



Modeling Continuous Longitudinal
Outcomes in SMARTs
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Example Model: Continuous Longitudinal Outcome in ENGAGE

t

E
[Y

(d
)

t
]

0 4 8 (t∗) 12 24

0
10

20
30

d = 1 d = 2 d = 3 d = 4

a1 1 1 -1 -1
a2R 0 0 0 0
a2NR 1 -1 1 -1

E
[
Y(d)t | X

]
:= µ

(d)
t (η,β)

= η⊤Xi + β0

+ 1
{
t ≤ t∗

}
{β1t+ β2a1t}

+ 1
{
t > t∗

}{
t∗β1 + t∗β2a1

+ β3(t− t∗) + β4(t− t∗)a1

+ β5(t− t∗)a2NR

+ β6(t− t∗)a1a2NR
}

Lu, X. et al. (2016). Statistics in Medicine.
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Observed Data

For the ith individual, we collect(
Xi, Y1,i, A1,i, Y2:T1,i, Ri, A2,i, YT1+1:T,i

)
A1,i A2,i

[
Xi
Y1,i

] 
Y2,i
...

YT1,i



YT1+1,i

...
YT,i


Ri
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M-Estimation of Model Parameters

0 =
N∑
i=1

∑
d

[
I(d)(A1,i, Ri, A2,i)

P(A1,i = a1)P(A2,i = a2 | A1,i = a1, Ri)

·
(
D(d)(Xi)

)⊤
· V(d) (Xi; τ )−1 ·

(
Yi − µ(d)(Xi;η,β)

)]
,

• I(d)(A1,i, Ri, A2,i) = 1{A1,i = a1}
(
Ri + (1− Ri)1{A2,i = a2}

)
for ENGAGE

• D(d)(Xi) =
∂

∂(η⊤,β⊤)⊤
µ(d)(Xi;η,β)

• V(d) (Xi; τ ) is a working model forVar
(
Y(d) − µ(d)(Xi;η,β)

)
• d specifies an embedded DTR

Lu, X. et al. (2016). Statistics in Medicine.
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M-Estimation of Model Parameters

0 =
N∑
i=1

∑
d︸︷︷︸

Sum over DTRs

[
I(d)(A1,i, Ri, A2,i)

P(A1,i = a1)P(A2,i = a2 | A1,i = a1, Ri)

·
(
D(d)(Xi)

)⊤
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Iterated Estimation Procedure

Let θ = (η⊤,γ⊤)⊤ be the vector of parameters in the marginal model.

1. Solve the estimating equations using V(d)(Xi; τ ) = IT×T, call the solution θ̂(0).

2. Use θ̂(0) to estimate τ , call the estimate τ̂(0).

3. Use τ̂(0) in the estimating equations to get a new estimate for θ

4. Iterate until convergence.

Seewald, N. J. et al. (2020). Stat Methods Med Res.
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Asymptotics

• Call the solution to the estimating equations θ̂
• Under usual regularity conditions:

• θ̂
p→ θ∗

•
√
n
(
θ̂ − θ∗

)
⇒ N

(
0,B−1MB−1

)
where

B := E

∑
d∈D

W(d) (A1, R, A2)D(d)(X)⊤V(d)(X; τ )−1D(d)(X)



M := E


∑

d∈D
W(d) (A1, R, A2)D(d)(X)⊤V(d)(X; τ )−1

(
Y− µ(d)(X;θ)

)⊗2


See, e.g., van der Vaart, A. W. (1998). Asymptotic Statistics, for details on regularity.



Sample Size for Comparing DTRs in
Longitudinal SMARTs
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Some Simplifications and Notation

• No baseline covariates (conservative)
• Measurement occasions are equally spaced in both stages

• T1 measurements in stage 1 (includes baseline)
• T2 measurements in stage 2
• T = T1 + T2 total measurements
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Goal

Goal: Develop a tractable sample size formula for the test

H0 : E
[
Y(1,a2R,a2NR)T − Y(−1,a′2R,a

′
2NR)

T

]
= 0 vs. H1 : E

[
Y(1,a2R,a2NR)T − Y(−1,a′2R,a

′
2NR)

T

]
= ∆.

Under our example model,

E
[
Y(−1,a2R,a2NR)
T − Y(−1,a′2R,a

′
2NR)

T

]
= c⊤β

So hypotheses become

H0 : c⊤β = 0 vs. H1 : c⊤β = ∆
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A Test Statistic

We use a 1-degree of freedom (asymptotic) Wald test with test statistic

Z =

√
nc⊤β̂
σc

,

where σ2
c = c⊤Var

(
β̂
)
c = c⊤B−1MB−1c.

B := E

∑
d∈D

W(d) (A1,i, Ri, A2,i)D(d)(Xi)⊤V(d)(Xi; τ )−1D(d)(Xi)



M := E


∑

d∈D
W(d) (A1,i, Ri, A2,i)D(d)(Xi)⊤V(d)(Xi; τ )−1

(
Yi − µ(d)(Xi;β)

)⊗2

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Sample Size for an End-of-Study Comparison of DTRs

Under mild working assumptions, exchangeable within-person correlation, and
constant variance across time and DTRs:

n ≥
4
(
z1−α/2 + z1−γ

)2
δ2

· DE (r) · ω(ρ, T, T2)

• δ = ∆/σ is the target standardized effect size

• α is the desired type-I error

• 1− γ is the desired power

• r = (r1, r−1)⊤ is a vector of response probabilities

• ρ = cor(Yt, Yt′ ) for t ̸= t′

• T is the total number of measurements

• T2 is the number of measurements in stage 2

Seewald, N. J. et al. (2020). Stat Methods Med Res.
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Sample Size for an End-of-Study Comparison of DTRs

Under mild working assumptions, exchangeable within-person correlation, and
constant variance across time and DTRs:

n ≥
4
(
z1−α/2 + z1−γ

)2
δ2

· DE (r)︸ ︷︷ ︸
Inflation: SMART design

·ω(ρ, T, T2)
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• 1− γ is the desired power

• r = (r1, r−1)⊤ is a vector of response probabilities

• ρ = cor(Yt, Yt′ ) for t ̸= t′

• T is the total number of measurements

• T2 is the number of measurements in stage 2
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Sample Size for an End-of-Study Comparison of DTRs

Under mild working assumptions, exchangeable within-person correlation, and
constant variance across time and DTRs:

n ≥
4
(
z1−α/2 + z1−γ

)2
δ2

· DE (r) · ω(ρ, T, T2)︸ ︷︷ ︸
Deflation: within-person outcome

• δ = ∆/σ is the target standardized effect size

• α is the desired type-I error

• 1− γ is the desired power

• r = (r1, r−1)⊤ is a vector of response probabilities

• ρ = cor(Yt, Yt′ ) for t ̸= t′

• T is the total number of measurements

• T2 is the number of measurements in stage 2
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Sample Size for an End-of-Study Comparison of DTRs

Under mild working assumptions, exchangeable within-person correlation, and
constant variance across time and DTRs:

n ≥
4
(
z1−α/2 + z1−γ

)2
δ2

· DE (r) · ω(ρ, T, T2)︸ ︷︷ ︸
Deflation: within-person outcome

Why deflation?

• Correlation iswithin-person, but analysis is between-DTRs

• Within-person correlation yields more precise estimates of between-DTR
differences

Seewald, N. J. et al. (2020). Stat Methods Med Res; Hedeker, D., Gibbons, R. D., and Waternaux, C. (1999). J. Educ. Behav. Stat.
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Getting to a Sample Size Formula

Starting from the test statistic

Z =

√
nc⊤θ̂
σc

,

γ = P

(∣∣∣∣∣
√
nc⊤θ̂
σc

∣∣∣∣∣ ≤ z1−α/2 | c⊤θ = ∆

)
. . .

n ≥
4
(
z1−α/2 + z1−γ

)2
∆2 · σ2

c

Challenge: Find a simple upper bound on σ2
c that yields an interpretable, tractable

sample size formula.
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Getting to a Sample Size Formula

Starting from the test statistic

Z =

√
nc⊤θ̂
σc

,

γ = P

(∣∣∣∣∣
√
nc⊤θ̂
σc

∣∣∣∣∣ ≤ z1−α/2 | c⊤θ = ∆

)
. . .

n ≥
4
(
z1−α/2 + z1−γ

)2
∆2 · σ2

c

Challenge: Find a simple upper bound on σ2
c that yields an interpretable, tractable

sample size formula.
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Getting to a Sample Size Formula

Challenge: Find a simple upper bound on σ2
c that yields an interpretable, tractable

sample size formula.

σ2
c = c⊤B−1MB−1c

M := E


∑

d∈D
W(d) (A1,i, Ri, A2,i)D(d)(Xi)⊤V(d)(Xi; τ )−1

(
Yi − µ(d)(Xi;θ)

)⊗2


Working withM is challenging
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Working Assumptions for Sample Size Formula

1. Constrained conditional variability:
1.1 For all embedded DTRs d,

E

[(
Y(d)i − µ(d)

)⊗2
| R(d)i = 1

]
− E

[(
Y(d)i − µ(d)

)⊗2
]

is positive semi-definite.

1.2 For all embedded DTRs d,

1

P
(
R(d)i = 1

) E

[(
Y(d)i − µ(d)

)⊗2
]
− E

[(
Y(d)i − µ(d)

)⊗2
| R(d)i = 1

]

is positive semi-definite.
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Working Assumptions for Sample Size Formula

1. Constrained conditional variability:
1.1 For all embedded DTRs d,

E

[(
Y(d)i − µ(d)

)⊗2
| R(d)i = 1

]
− E

[(
Y(d)i − µ(d)

)⊗2
]

is positive semi-definite.
1.2 For all embedded DTRs d,

1

P
(
R(d)i = 1

) E

[(
Y(d)i − µ(d)

)⊗2
]
− E

[(
Y(d)i − µ(d)

)⊗2
| R(d)i = 1

]

is positive semi-definite.
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Working Assumptions for Sample Size Formula

2. Constrained Conditional Means. For every embedded DTR d and and all embedded
DTRs d′ such that a(d)1 ̸= a(d

′)
1 ,(

E
[
Y(d)i | R(d)i = 1

]
− µ(d)

)(
µ(d) − µ(d′)

)⊤
is “small”
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Sample Size for an End-of-Study Comparison

Under the working assumptions,

n ≥
4
(
z1−α/2 + z1−β

)2
δ2

· DE(r) · ω(ρ, T, T2)

Stage 1

C

D

R

E

F

G

R

H

Stage 2

A

B

R

Responders

Non-Responders

Responders

Non-Responders

DE(r) = 2− (r1 + r−1)

2
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Sample Size for an End-of-Study Comparison

Under the working assumptions,

n ≥
4
(
z1−α/2 + z1−β

)2
δ2

· DE(r) · ω(ρ, T, T2)

Stage 1 Stage 2

C
R

D
A

E
R

F
R

G
R

H
B

I
R

J

Responders

Non-Responders

Responders

Non-Responders

DE(r) = 2

Stage 1

C

D

R

E

F

G

R

H

Stage 2

A

B

R

Responders

Non-Responders

Responders

Non-Responders

DE(r) = 2− (r1 + r−1)

2

C

D

R

E

F

G

Stage 1 Stage 2

A

B

R

Responders

Non-Responders

Responders

Non-Responders

DE(r) =
1
2
(3− r1)
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1
5 2
7 5
9 7
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 559
5 2 391
7 5 293
9 7 233
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.1 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 553
5 2 402
7 5 314
9 7 260
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.3 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 508
5 2 391
7 5 322
9 7 281
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.5 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 419
5 2 335
7 5 286
9 7 256



36

Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.6 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 358
5 2 291
7 5 251
9 7 227
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.7 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 285
5 2 235
7 5 205
9 7 187
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.8 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 201
5 2 168
7 5 148
9 7 136
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Understanding ω(ρ, T, T2)

T

5

10

15
T2

5

10

ω
(ρ
, T
, T

2 )

0.0

0.5

1.0

ρ = 0.9 Sample sizes for
• 40% response rate

• 80% power

• 5% two-sided type-I error

δ T T2 n

0.3 3 1 107
5 2 90
7 5 80
9 7 74
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Special Case: ω(ρ, T, T2) simplifies for 3measurements

t

E
[Y

(d
)

t
]

0 8 (t∗) 24

0
10

20
30

ω(ρ, 3, 1) = (1− ρ2)

Seewald, N. J. et al. (2020). Stat Methods Med Res.

Fitzmaurice, G. M., Laird, N. M., and Ware, J. H. (2011). Applied Longitudinal Analysis, ch. 20.
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Implementation in Software

Sample size methods are implemented in an R package called longsmart

longsmart::smart_size(n = NULL, delta = 0.3, mTimes = c(0, 1, 2, 3, 4),
tStar = 2, power = 0.8, pR = c(0.4, 0.4))

# Longitudinal SMART power calculation
#
# n = 462
# delta = 0.3
# sig.level = 0.05
# power = 0.8
# alternative = two.sided
# meas.times = 0, 1, 2, 3, 4
# t.star = 0.5
# rho = 0
# pR = 0.4, 0.4
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(Preliminary) Simulation Results

T = 3 T = 5, T2 = 2

δ ρ r1 r−1 n Power n Power

0.3 0 0.4 0.4 559 0.804 462 0.788
0.6 0.6 489 0.825 405 0.758∗

0.3 0.4 0.4 508 0.803 427 0.804
0.6 0.6 445 0.810 373 0.770∗

0.6 0.4 0.4 358 0.833∗ 296 0.818
0.6 0.6 313 0.818 259 0.738∗

0.8 0.4 0.4 201 0.858∗ 164 0.842∗
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Recap: Our Contribution

Easy-to-use sample size formula for comparing embedded DTRs at the end of the study
in a longitudinal SMART:

n ≥
4
(
z1−α/2 + z1−γ

)2
δ2

· DE (r) · ω(ρ, T, T2)



Cost Considerations for Longitudinal
SMARTs
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Trials are Expensive

• Variability in cost related to number of participants, sites, and visits

• One trial studying depression in patients with type 2 diabetes spent $1358/patient
on recruitment

• Per-patient costs are an important component of overall trial costs

Martin, L. et al. (2017). Nat Rev Drug Discov.

Myers, B. A. et al. (2019). Trials.

Sertkaya, A. et al. (2016). Clin Trials.
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Minimizing Recruitment Costs

• Equivalent to minimizing sample size

• Possibly of interest for hard-to-reach populations

Naive strategy: measure the outcome as many times as possible!

This is not practical.
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Minimizing Recruitment Costs

• Equivalent to minimizing sample size

• Possibly of interest for hard-to-reach populations

Naive strategy: measure the outcome as many times as possible!

This is not practical.
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Minimizing Sample Size Requirements given T

Idea:
Given ρ and T, find the optimal allocation of measurements across stages of the SMART
to minimize the sample size requirement.

minimize
T2

ω (ρ, T, T2)

subject to T2 ∈ {1, . . . , T− 2}
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Minimizing Sample Size Requirements given T

Question: How do we allocate measurement occasions across stages of the SMART to
minimize the sample size requirement?

t

E
[ Y

(d
)

t
]

0 8 (t∗) 24

0
10

20
30

t

E
[Y

(d
)

t
]

0 2 4 6 8 24

0
10

20
30
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Minimizing Sample Size Requirements given T

Question: How do we allocate measurement occasions across stages of the SMART to
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Minimizing Sample Size Requirements given T

Question: How do we allocate measurement occasions across stages of the SMART to
minimize the sample size requirement?
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Minimizing Sample Size Requirements given T

Question: How do we allocate measurement occasions across stages of the SMART to
minimize the sample size requirement?
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Choosing T2 to Minimize Sample Size

c(0, 1, 2)

T = 10

Stage 1 Stage 2

4 6 8 10 12 14

2
4

6
8

10
12

T (total number of measurements)

O
pt
im

al
T 2

to
m
in
im

iz
e
sa
m
pl
e
si
ze

Maximum T2

Equal allocation
across stages:
T2 = ⌊T/2⌋
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mTimes

T = 10

Stage 1 Stage 2
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T (total number of measurements)

O
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T 2
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m
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e
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m
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e
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Equal allocation
across stages:
T2 = ⌊T/2⌋

ρ = 0
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Choosing T2 to Minimize Sample Size

mTimes
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Choosing T2 to Minimize Sample Size

mTimes
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Choosing T2 to Minimize Sample Size
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Choosing T2 to Minimize Sample Size
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Choosing T2 to Minimize Sample Size

mTimes

T = 10

Stage 1 Stage 2

4 6 8 10 12 14
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T (total number of measurements)

O
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T 2
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m
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e
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m
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e
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Maximum T2

Equal allocation
across stages:
T2 = ⌊T/2⌋

ρ = 0.9
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Choosing T2 to Minimize Sample Size

With equally-spacedmeasurements,

• For low ρ and/or low T, put as manymeasurements in stage 2 as possible.
• At low ρ, power gains are likely from better modeling the linear trend in stage 2

• For higher ρ and/or higher T, diminishing returns of more measurements in stage 2
• At high ρ, more information per measurement; share the love with stage 1

• Difficult to identify exactly what “low ρ” and “high T” mean, since ω(ρ, T, T2) is
complicated.
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Choosing T2 to Minimize Sample Size

With equally-spacedmeasurements,

• For low ρ and/or low T, put as manymeasurements in stage 2 as possible.
• At low ρ, power gains are likely from better modeling the linear trend in stage 2

• For higher ρ and/or higher T, diminishing returns of more measurements in stage 2
• At high ρ, more information per measurement; share the love with stage 1

• Difficult to identify exactly what “low ρ” and “high T” mean, since ω(ρ, T, T2) is
complicated.
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Implementation in Software

longsmart has a simple interface for this optimization.

Example 1
Minimize total recruitment costs for a SMART with

• 8 measurement occasions

• δ = 0.4

• ρ = 0.36

• P(R = 1 | A1 = 1) = 0.4

• P(R = 1 | A1 = −1) = 0.5

• $300 to recruit one participant
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Implementation in Software

longsmart::optimize_cost(delta = 0.4, tStar = 8, tMax = 16, numTimesMax = 8,
power = 0.8, pR = c(0.4, 0.5),
cost_recruit = 300)

# Cost-optimal measurement time allocation for longitudinal SMART
#
# Optimal total number of measurements: 8
# Optimal number of measurements in stage 2: 5
# Sample size required: 160
# Total cost: 48,000
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Per-Participant Costs in SMARTs

• Recruiting participants is expensive

• We can use efficiency from longitudinal data to lower sample size requirements

• But measurements also contribute to trial cost

Goal:
Given information about recruitment andmeasurement costs, identify the cheapest
way to achieve target power for end-of-study comparison of embedded DTRs.
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Per-Participant Costs in SMARTs

• Recruiting participants is expensive

• We can use efficiency from longitudinal data to lower sample size requirements

• But measurements also contribute to trial cost

Goal:
Given information about recruitment andmeasurement costs, identify the cheapest
way to achieve target power for end-of-study comparison of embedded DTRs.
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Minimizing Per-Participant Costs in SMARTs

Setup

• CR: Cost of recruiting one participant

• C1: Per-participant cost of measuring outcome once in stage 1

• C2: Per-participant cost of measuring outcome once in stage 2

Total per-participant cost
C(n, T, T2) = n

(
CR + (T− T2)C1 + T2C2

)
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Minimizing Per-Participant Costs in SMARTs

Find n, T, and T2 which minimize the cost function while achieving at least 80% power.

minimize
n,T,T2

C(n, T, T2)

subject to power ≥ 0.8

T ∈ {3, 4, . . . , Tmax} ,
T2 ∈ {1, 2, . . . , T− 2}
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Minimizing Per-Participant Costs in SMARTs

Find n, T, and T2 which minimize the cost function while achieving at least 80% power.

Substitute nwith our sample size formula to satisfy the power constraint.

minimize
T,T2


4
(
z1−α/2 + z0.8

)2
δ2

· DE(r) · ω(ρ, T, T2)


(
CR + (T− T2)C1 + T2C2

)
subject to T ∈ {3, 4, . . . , Tmax} ,

T2 ∈ {1, 2, . . . , Tmax − 2} .
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Minimizing Per-Participant Costs in SMARTs

Tcost (Tcost
2 )

CR/CM ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7

1
2
5
10
100
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Minimizing Per-Participant Costs in SMARTs

Tcost (Tcost
2 )

CR/CM ρ = 0 ρ = 0.3 ρ = 0.5 ρ = 0.7

1 3 (1) 3 (1) 3 (1) 3 (1)
2 15 (13) 3 (1) 3 (1) 3 (1)
5 15 (13) 7 (5) 5 (3) 15 (7)
10 15 (13) 15 (10) 15 (8) 15 (7)
100 15 (13) 15 (10) 15 (8) 15 (7)
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Implementation in Software

longsmart has a simple interface for this optimization.

Example 2
Minimize total costs for a SMART with

• At most 8 measurement occasions

• δ = 0.4

• ρ = 0.36

• P(R = 1 | A1 = 1) = 0.4

• P(R = 1 | A1 = −1) = 0.5

• $300 to recruit one participant

• $20 to measure one participant once
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Implementation in Software

longsmart::optimize_cost(delta = 0.4, tStar = 8, tMax = 16, numTimesMax = 8,
power = 0.8, pR = c(0.4, 0.5),
cost_recruit = 300, cost_meas = 20)

# Cost-optimal measurement time allocation for longitudinal SMART
#
# Optimal total number of measurements: 8
# Optimal number of measurements in stage 2: 5
# Sample size required: 160
# Total cost: 73,600
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Practical Implications for Designing SMARTs

• Reframe conversations about sample size for longitudinal SMARTs

• Statisticians can work collaboratively with investigators to design more
cost-effective trials

• Different framing from previous work which constrains cost

• We prioritize the reality that trials need at least 80% for funding

Bloch, D. A. (1986). Statistics in Medicine; Zhang, S. and Ahn, C. (2011). Statistics in Biopharmaceutical Research; Liu, J. and Colditz, G. A. (2017). Biometrical
Journal.
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Conclusions and Looking Ahead
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A Suite of Tools

We have developed a suite of tools for the design and analysis of longitudinal SMARTs

• Sample size for comparison of embedded DTRs

• Financial considerations

• R package for simulation and sample size
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Future Extensions

• Other longitudinal estimands (like area under the curve)

• Intensive longitudinal data



Thank you.
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