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Motivating Example: The ENGAGE Study (McKay, et al. 2015)

In treating alcohol- and cocaine-dependent patients, there is
a question as to how best to re-engage individuals who do
not engage in treatment.

For these individuals, should we attempt to re-engage them in
their original treatment, or offer them a choice of treatment
modality?

What do we do if that doesn’t work?

This is a question about a sequence of treatments.
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Dynamic Treatment Regimes

Dynamic treatment regimes (DTRs) operationalize clinical
decision-making by recommending particular treatments to
certain subsets of patients at specific times.

No further
contact

MI-IOP

MI-PC

Response

Non-Response

• MI-IOP: 2 motivational
interviews to re-engage patient
in intensive outpatient program

• MI-PC: 2 motivational interviews
to engage patient in treatment
of their choice.

. Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.
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Dynamic Treatment Regimes

No further
contact

MI-IOP

MI-PC

Response

Non-Response

We’ll index a dynamic
treatment regime with a
triple

(a1,aR,aNR).

This DTR is written

(MI-IOP,No further contact,MI-PC).
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Sequential, Multiple-Assignment Randomized Trials

A SMART is one type of randomized trial design that can be
used to answer questions at multiple stages of the
development of a high-quality DTR.

The key feature of a SMART is that some (or all) participants
are randomized more than once.
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Motivating Example: The ENGAGE Study (McKay, et al., 2015)

Stage 1 Stage 2 Subgroup

NFC A

MI-IOP

MI-PC B

R

NFC C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC D

MI-PC

MI-PC E

R

NFC F

Program Entry Week 4 Week 8 Week 12 Week 24

Responders

Non-Responders

Responders

Non-Responders
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Four Embedded DTRs in ENGAGE
d = 1 Stage 1 Stage 2 Subgroup
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Four Embedded DTRs in ENGAGE
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Four Embedded DTRs in ENGAGE
d = 3 Stage 1 Stage 2 Subgroup
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Four Embedded DTRs in ENGAGE
d = 4 Stage 1 Stage 2 Subgroup
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A common primary aim in a SMART is the comparison of two
embedded DTRs using a continuous longitudinal outcome at
the end of the study.

E

[
Y(1,a2R,a2NR)tmax − Y(−1,a

′
2R,a′2NR)

tmax

]
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Primary Aim

d = 1 Stage 1 Stage 2 Subgroup

d = 3 NFC
a2R = 0 A

MI-IOP
a1 = 1

MI-PC
a2NR = 1 B

R
NFC

a2NR = −1 C
Non-Engagers
During the First
8 Weeks of IOP

R

NFC
a2R = 0 D

MI-PC
a1 = −1

MI-PC
a2NR = 1 E

R
NFC

a2NR = −1 F
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Engagers

Continued
Non-Engagers

Engagers

Continued
Non-Engagers
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Observed Data

(
Y0, A1,i, Y[0<t≤t∗],i, Ri, A2,i, Y[t>t∗],i

)
For the ith participant, i = 1, . . . ,n,

• A1,i ∈ {−1, 1} indicates the randomly assigned first-stage
treatment

• Ri = 1
{
i th participant responded to first-stage treatment}

• A2,i ∈ {−1,0, 1} indicates the randomly assigned second-stage
treatment (±1 if re-randomized, 0 otherwise)

• Yi =
{
Y1,i, . . . , YT,i

}
is the vector of continuous outcomes

observed throughout the study
• t∗ is the timepoint immediately prior to second randomization
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An Example Model for a Continuous Longitudinal Outcome in
ENGAGE (Lu et al. 2016)

t

E
[Y

(d
)

t
]

0 4 8 (t∗) 12 24

0
10

20
30

40

d = 1 d = 2 d = 3 d = 4

a1 1 1 -1 -1
a2R 0 0 0 0
a2NR 1 -1 1 -1

E
[
Y(d)t

]
:= µ(d)(β)

= β0

+ 1
{
t ≤ t∗

}
{β1t+ β2a1t}

+ 1
{
t > t∗

}{
t∗β1 + t∗β2a1

+ β3(t− t∗) + β4(t− t∗)a1
+ β5(t− t∗)a2NR
+ β6(t− t∗)a1a2NR

}
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“GEE-Type” Estimating Equations for Model Parameters

0 =
N∑
i=1

∑
d

[
I(d)(A1,i,Ri, A2,i)

P(A1,i = a1)P(A2,i = a2 | A1,i = a1,Ri)︸ ︷︷ ︸
W(d)(A1,i,Ri,A2,i)

·
(
D(d)

)⊤
· V(d) (τ )−1 ·

(
Yi − µ(d)(β)

)]
,

where
• d specifies an embedded DTR,
• W(d)(A1,i,Ri, A2,i) = 1

{
A1,i = a1

}(
2Ri + 4 (1− Ri)1

{
A2,i = a2

})
• D(d) = ∂

∂β⊤µ(d)(β)

• V(d) (τ ) is a working model for Var
(
Y(d) − µ(d)(β)

)
. Lu, X., et al. (2016). Stat. Med.
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Goal:
For this analysis, develop a sample size formula for SMARTs
with a continuous longitudinal outcome in which the primary
aim is to compare, at end-of-study, two embedded DTRs
which recommend different first-stage treatments.
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Hypotheses and Estimand

• Using the GEE-type analysis, we want to test

H0 : c⊤β = 0

against an alternative of the form H1 : c⊤β = ∆.
• We choose c such that

c⊤β = E

[
Y(1,a2R,a2NR)2 − Y(−1,a

′
2R,a′2NR)

2

]
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A Test Statistic

We use a 1-degree of freedom Wald test with test statistic

Z =

√
nc⊤β̂
σc

,

where σ2c = Var
(
c⊤β̂

)
= c⊤B−1M̂B−1c and

B := E

∑
d∈D

W(d)
(
A1,i,Ri,A2,i

)(
D(d)

)⊤
V(d)(τ )−1D(d)



M := E


∑
d∈D

W(d)
(
A1,i,Ri,A2,i

)
D(d)V(d)(τ )−1

(
Yi − µ(d)(β)

)⊗2

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Context:

• Three timepoints
• Randomization probability 0.5
• Exchangeable correlation structure
• Some working assumptions (to come)
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Sample Size for an End-of-Study Comparison

N ≥
4
(
z1−α/2 + z1−γ

)2
δ2

· (1− ρ2) · (2− r)

where

• δ = E[Y(d)2 − Y(d
′)

2 ]/

√(
Var(Y(d)2 ) + Var(Y(d

′)
2 )

)
/2 is the

targeted standardized effect size
• α is the desired type-I error
• 1− γ is the desired power
• ρ = cor(Yt, Yt′) for t ̸= t′
• r = P(Ri = 1)
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Sample Size for an End-of-Study Comparison
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Sample Size for an End-of-Study Comparison

N ≥
4
(
z1−α/2 + z1−γ

)2
δ2
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Inflation for SMART design
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Sample Size for an End-of-Study Comparison

Table 1: Example sample sizes for comparison of two embedded
DTRs. r = 0.4, α = 0.05 (two-sided), and 1− γ = 0.8.

Within-Person Correlation

Std. Effect Size ρ = 0 ρ = 0.3 ρ = 0.6

δ = 0.3 559 508 358
δ = 0.5 201 183 129
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Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage
residuals. For any ti ≤ tj ≤ t∗,

Cov

(
R(a1),

(
Y(d)ti − µ

(d)
ti

)(
Y(d)tj − µ

(d)
tj

))
= 0

2. Constrained conditional covariances.

2.1 E

[(
Y(d)2 − µ

(d)
2

)2
| R(a1) = 0

]
≤ Var

(
Y(d)2

)
2.2 Cov(Y(d)t , Y(d)2 | R = 1) ≤ Cov(Y(d)t , Y(d)2 | R = 0) for all d and

t = 0, 1.

. Oetting, A. I., et al. (2011).
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Working Assumptions for Sample Size

3. Exchangeable correlation structure.

Var
(
Y(d)

)
= σ2

1 ρ ρ

ρ 1 ρ

ρ ρ 1


for all d.
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Simulation Results

Target: 1− γ = 0.8, α = 0.05 (two-sided)

Empirical power
δ P(R = 1) ρ N All satisfied 1 violated 2.1 violated 2.2 violated

0.3 0.4 0 559 0.801 0.778∗ 0.803 –
0.3 508 0.804 0.800 0.797 0.798
0.6 358 0.817 0.807 0.759∗ 0.788
0.8 201 0.836 0.809 – 0.792

0.6 0 489 0.804 0.736∗ 0.810 –
0.3 445 0.797 0.758∗ 0.795 0.780∗
0.6 313 0.824 0.793 0.752∗ 0.770∗
0.8 176 0.845 0.754∗ – 0.776∗

∗ Result is significantly less than 0.8 at the 0.05 significance level.
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Extension to More than Three Timepoints

• A work in progress!
• Challenges:

• When should we add timepoints? First stage? Second
stage? Both?

• How do we generalize our working assumptions to general
covariance matrices?

• Relationship between power and ρ appears to be highly
dependent on working correlation structure
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Working Assumptions for Sample Size

1. Response is uncorrelated with products of first-stage
residuals. For any ti ≤ tj ≤ t∗,

Cov

(
R(a1),

(
Y(d)ti − µ

(d)
ti

)(
Y(d)tj − µ

(d)
tj

))
= 0

Intuition: If this is not true, the relationship between, say Y(d)1
and R might look like this:

R(a1) = 1 1 1 0 0 0 0 0 1 1 1
Y(d)1

µ
(d)
1



Two Definitions of Response

-10 -5 0 5 10

Y(d)1 − µ
(d)
1

Cov

(
R(a1),

(
Y(d)1 − µ

(d)
1

)2)
= 0.941

Cov

(
R(a1),

(
Y(d)1 − µ

(d)
1

)2)
= 3.673

R(a1) = 1
R(a1) = 0

R(a1) = 1

{(
Y(d)1

)2
> 4.7

}

R(a1) = 1

{
Y(d)1 > 0.7

}


