Sample size considerations for comparing dynamic treatment regimes in a SMART with a longitudinal outcome

Nicholas J. Seewald

Department of Statistics University of Michigan

Joint with K.M. Kidwell, J.R. McKay, I. Nahum-Shani, T. Wu, D. Almirall

CFE-CMStatistics 2019
16 December 2019

In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.

In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.

For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

1

In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.

For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

What do we do if that doesn't work?

In treating alcohol- and cocaine-dependent patients, there is a question as to how best to re-engage individuals who do not engage in treatment.

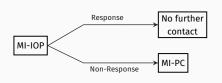
For these individuals, should we attempt to re-engage them in their original treatment, or offer them a choice of treatment modality?

What do we do if that doesn't work?

This is a question about a sequence of treatments.

Dynamic Treatment Regimes

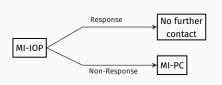
Dynamic treatment regimes (DTRs) operationalize clinical decision-making by recommending particular treatments to certain subsets of patients at specific times.



- MI-IOP: 2 motivational interviews to re-engage patient in intensive outpatient program
- MI-PC: 2 motivational interviews to engage patient in treatment of their choice.

[·] Chakraborty, B., and E. E. M. Moodie (2013). Statistical Methods for Dynamic Treatment Regimes.

Dynamic Treatment Regimes



We'll index a dynamic treatment regime with a triple

 $(a_1, a_R, a_{NR}).$

This DTR is written

(MI-IOP, No further contact, MI-PC).

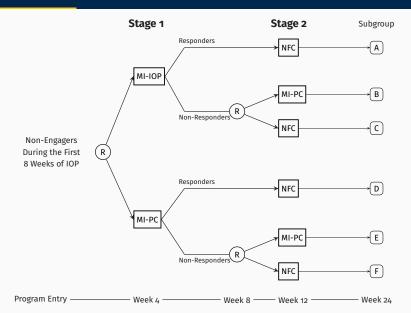
Sequential, Multiple-Assignment Randomized Trials

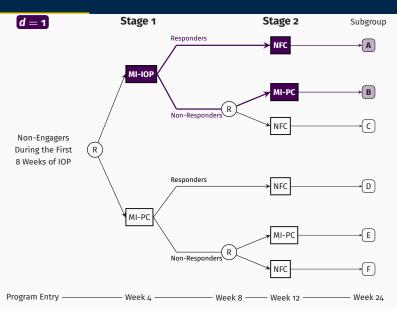
A **SMART** is one type of randomized trial design that can be used to answer questions at multiple stages of the development of a high-quality DTR.

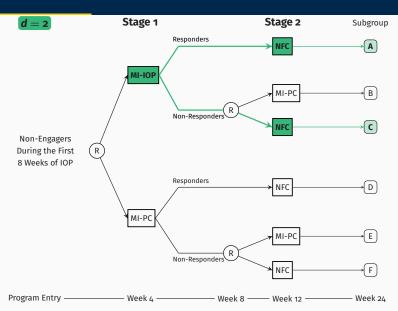
Sequential, Multiple-Assignment Randomized Trials

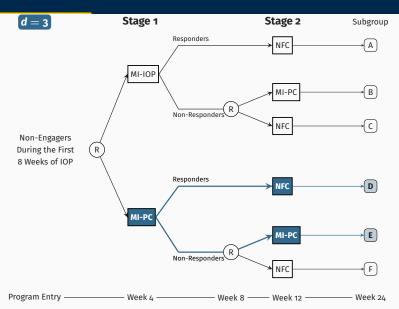
A **SMART** is one type of randomized trial design that can be used to answer questions at multiple stages of the development of a high-quality DTR.

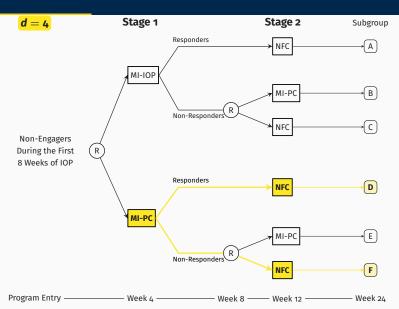
The key feature of a SMART is that some (or all) participants are randomized *more than once*.







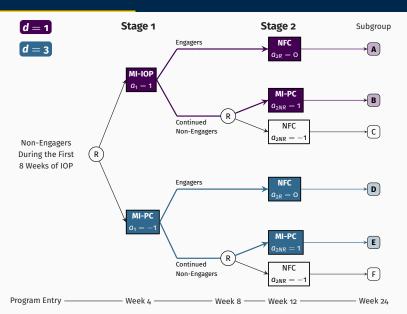




A common primary aim in a SMART is the comparison of two embedded DTRs using a continuous longitudinal outcome at the end of the study.

$$\mathsf{E}\left[Y_{\mathsf{t}_{\mathsf{max}}}^{(1,a_{2R},a_{2NR})} - Y_{\mathsf{t}_{\mathsf{max}}}^{(-1,a_{2R}',a_{2NR}')}\right]$$

Primary Aim



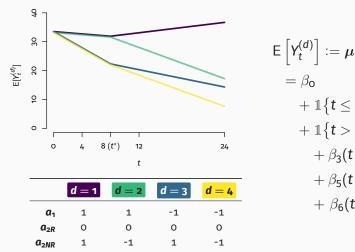
Observed Data

$$\left(Y_0, A_{1,i}, \mathbf{Y}_{[0 < t \le t^*],i}, R_i, A_{2,i}, \mathbf{Y}_{[t > t^*],i}\right)$$

For the *i*th participant, i = 1, ..., n,

- $A_{1,i} \in \{-1,1\}$ indicates the randomly assigned first-stage treatment
- $R_i = 1$ { ith participant responded to first-stage treatment }
- $A_{2,i} \in \{-1, 0, 1\}$ indicates the randomly assigned second-stage treatment (± 1 if re-randomized, o otherwise)
- $\mathbf{Y}_i = \{Y_{1,i}, \dots, Y_{T,i}\}$ is the vector of continuous outcomes observed throughout the study
- $oldsymbol{\cdot}$ t^* is the timepoint immediately prior to second randomization

An Example Model for a Continuous Longitudinal Outcome in ENGAGE (Lu et al. 2016)



$$\begin{split} \mathsf{E}\left[Y_{t}^{(d)}\right] &:= \mu^{(d)}(\beta) \\ &= \beta_{\mathsf{O}} \\ &+ \mathbb{1}\left\{t \leq t^{*}\right\} \left\{\beta_{1}t + \beta_{2}a_{1}t\right\} \\ &+ \mathbb{1}\left\{t > t^{*}\right\} \left\{t^{*}\beta_{1} + t^{*}\beta_{2}a_{1}\right. \\ &+ \beta_{3}(t - t^{*}) + \beta_{4}(t - t^{*})a_{1} \\ &+ \beta_{5}(t - t^{*})a_{2NR} \\ &+ \beta_{6}(t - t^{*})a_{1}a_{2NR} \right\} \end{split}$$

"GEE-Type" Estimating Equations for Model Parameters

$$O = \sum_{i=1}^{N} \sum_{d} \left[\underbrace{\frac{I^{(d)}(A_{1,i}, R_{i}, A_{2,i})}{P(A_{1,i} = a_{1})P(A_{2,i} = a_{2} \mid A_{1,i} = a_{1}, R_{i})}_{W^{(d)}(A_{1,i}, R_{i}, A_{2,i})} \cdot \left(\mathbf{p}^{(d)} \right)^{\top} \cdot \mathbf{V}^{(d)} (\tau)^{-1} \cdot \left(\mathbf{Y}_{i} - \boldsymbol{\mu}^{(d)}(\beta) \right) \right],$$

- d specifies an embedded DTR,
- $W^{(d)}(A_{1,i},R_i,A_{2,i}) = \mathbb{1}\{A_{1,i} = a_1\} (2R_i + 4(1-R_i)\mathbb{1}\{A_{2,i} = a_2\})$
- $\mathbf{D}^{(d)} = rac{\partial}{\partialoldsymbol{eta}^ op} oldsymbol{\mu}^{(d)}(oldsymbol{eta})$
- ullet $oldsymbol{V}^{(d)}(au)$ is a working model for $oldsymbol{V}$ ar $\left(oldsymbol{Y}^{(d)}-\mu^{(d)}(eta)
 ight)$
- . Lu, X., et al. (2016). Stat. Med.

Goal:

For this analysis, develop a sample size formula for SMARTs with a continuous longitudinal outcome in which the primary aim is to compare, at end-of-study, two embedded DTRs which recommend different first-stage treatments.

Hypotheses and Estimand

· Using the GEE-type analysis, we want to test

$$H_0: \mathbf{c}^{\top} \boldsymbol{\beta} = 0$$

against an alternative of the form $H_1: \mathbf{c}^\top \beta = \Delta$.

· We choose c such that

$$\boldsymbol{c}^{\top}\boldsymbol{\beta} = \mathsf{E}\left[Y_2^{(1,a_{2R},a_{2NR})} - Y_2^{(-1,a_{2R}',a_{2NR}')}\right]$$

A Test Statistic

We use a 1-degree of freedom Wald test with test statistic

$$Z = \frac{\sqrt{n} \mathbf{c}^{\top} \hat{\boldsymbol{\beta}}}{\sigma_{\mathbf{c}}},$$

where $\sigma_{c}^{2} = \operatorname{Var}\left(\boldsymbol{c}^{\top}\hat{\boldsymbol{\beta}}\right) = \boldsymbol{c}^{\top}\boldsymbol{B}^{-1}\hat{\boldsymbol{M}}\boldsymbol{B}^{-1}\boldsymbol{c}$ and

$$\boldsymbol{B} := \mathsf{E}\left[\sum_{d \in \mathcal{D}} W^{(d)}\left(\mathsf{A}_{1,i}, \mathsf{R}_{i}, \mathsf{A}_{2,i}\right) \left(\boldsymbol{D}^{(d)}\right)^{\top} \boldsymbol{V}^{(d)}(\tau)^{-1} \boldsymbol{D}^{(d)}\right]$$

$$\mathbf{M} := \mathsf{E}\left[\left(\sum_{d \in \mathcal{D}} \mathsf{W}^{(d)}\left(\mathsf{A}_{1,i}, \mathsf{R}_{i}, \mathsf{A}_{2,i}\right) \mathbf{D}^{(d)} \mathbf{V}^{(d)}(\tau)^{-1} \left(\mathbf{Y}_{i} - \boldsymbol{\mu}^{(d)}(\beta)\right)\right)^{\otimes 2}\right]$$

Context:

- Three timepoints
- · Randomization probability 0.5
- · Exchangeable correlation structure
- · Some working assumptions (to come)

$$N \geq \frac{4\left(Z_{1-\alpha/2} + Z_{1-\gamma}\right)^2}{\delta^2} \cdot (1-\rho^2) \cdot (2-r)$$

- $\delta = \text{E}[Y_2^{(d)} Y_2^{(d')}] / \sqrt{\left(\text{Var}(Y_2^{(d)}) + \text{Var}(Y_2^{(d')})\right)}$ /2 is the targeted standardized effect size
- α is the desired type-I error
- 1 $-\gamma$ is the desired power
- $\rho = cor(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

$$N \ge \underbrace{\frac{4\left(\mathbf{z_{1-\alpha/2}} + \mathbf{z_{1-\gamma}}\right)^2}{\delta^2}}_{\text{Standard sample size for a 2-arm trial}} \cdot (1 - \rho^2) \cdot (2 - r)$$

- $\delta = \text{E}[Y_2^{(d)} Y_2^{(d')}] / \sqrt{\left(\text{Var}(Y_2^{(d)}) + \text{Var}(Y_2^{(d')})\right)/2}$ is the targeted standardized effect size
- α is the desired type-I error
- 1 $-\gamma$ is the desired power
- $\rho = \operatorname{cor}(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

$$N \geq rac{4\left(Z_{1-lpha/2} + Z_{1-\gamma}
ight)^2}{\delta^2} \cdot \underbrace{\left(\mathbf{1} -
ho^2
ight)}_{ ext{Deflation for repeated measures}} \cdot (2-r)$$

- $\delta = \text{E}[Y_2^{(d)} Y_2^{(d')}] / \sqrt{\left(\text{Var}(Y_2^{(d)}) + \text{Var}(Y_2^{(d')})\right)}$ /2 is the targeted standardized effect size
- α is the desired type-I error
- 1 $-\gamma$ is the desired power
- $\rho = \operatorname{cor}(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

$$N \geq rac{4\left(\mathbf{Z}_{1-lpha/2} + \mathbf{Z}_{1-\gamma}
ight)^2}{\delta^2} \cdot (\mathbf{1} -
ho^2) \cdot \underbrace{\left(\mathbf{2} - \mathbf{r}
ight)}_{ ext{Inflation for SMART design}}$$

- $\delta = \text{E}[Y_2^{(d)} Y_2^{(d')}] / \sqrt{\left(\text{Var}(Y_2^{(d)}) + \text{Var}(Y_2^{(d')})\right)/2}$ is the targeted standardized effect size
- α is the desired type-I error
- 1 $-\gamma$ is the desired power
- $\rho = \operatorname{cor}(Y_t, Y_{t'})$ for $t \neq t'$
- $r = P(R_i = 1)$

Table 1: Example sample sizes for comparison of two embedded DTRs. r= 0.4, $\alpha=$ 0.05 (two-sided), and 1 $-\gamma=$ 0.8.

	Wi	Within-Person Correlation				
Std. Effect Size	ho = 0	ho = 0.3	$ ho = {\sf 0.6}$			
$\delta=$ 0.3	559	508	358			
$\delta =$ 0.5	201	183	129			

1. Response is uncorrelated with products of first-stage residuals. For any $t_i \le t_j \le t^*$,

$$\mathsf{Cov}\left(\mathsf{R}^{(a_1)},\left(\mathsf{Y}_{\mathsf{t}_i}^{(d)}-\mu_{\mathsf{t}_i}^{(d)}\right)\left(\mathsf{Y}_{\mathsf{t}_j}^{(d)}-\mu_{\mathsf{t}_j}^{(d)}\right)\right)=\mathsf{O}$$

[.] Oetting, A. I., et al. (2011).

1. Response is uncorrelated with products of first-stage residuals. For any $t_i \leq t_j \leq t^*$,

$$\mathsf{Cov}\left(\mathsf{R}^{(a_1)}, \left(\mathsf{Y}_{t_i}^{(d)} - \mu_{t_i}^{(d)}\right) \left(\mathsf{Y}_{t_j}^{(d)} - \mu_{t_j}^{(d)}\right)\right) = \mathsf{O}$$

2. Constrained conditional covariances.

$$\textbf{2.1} \ \ \mathsf{E}\left[\left(Y_2^{(d)} - \mu_2^{(d)}\right)^2 \mid R^{(a_1)} = \mathsf{O}\right] \leq \mathsf{Var}\left(Y_2^{(d)}\right)$$

2.2
$$Cov(Y_t^{(d)}, Y_2^{(d)} \mid R = 1) \le Cov(Y_t^{(d)}, Y_2^{(d)} \mid R = 0)$$
 for all d and $t = 0, 1$.

[.] Oetting, A. I., et al. (2011).

3. Exchangeable correlation structure.

$$\mathsf{Var}\left(\mathbf{Y}^{(d)}\right) = \sigma^2 \begin{bmatrix} 1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1 \end{bmatrix}$$

for all d.

Simulation Results

Target: 1 $-\gamma$ = 0.8, α = 0.05 (two-sided)

			Empirical power					
δ	P(R=1)	ρ	N	All satisfied	1 violated	2.1 violated	2.2 violated	
0.3	0.4	0	559	0.801	0.778*	0.803	-	
		0.3	508	0.804	0.800	0.797	0.798	
		0.6	358	0.817	0.807	0.759*	0.788	
		0.8	201	0.836	0.809	-	0.792	
	0.6	0	489	0.804	0.736*	0.810	-	
		0.3	445	0.797	0.758*	0.795	0.780*	
		0.6	313	0.824	0.793	0.752*	0.770*	
		0.8	176	0.845	0.754*	-	0.776*	

^{*} Result is significantly less than 0.8 at the 0.05 significance level.

Extension to More than Three Timepoints

- A work in progress!
- · Challenges:
 - When should we add timepoints? First stage? Second stage? Both?
 - How do we generalize our working assumptions to general covariance matrices?
 - Relationship between power and ρ appears to be highly dependent on working correlation structure

Article

Sample size considerations for comparing dynamic treatment regimens in a sequential multiple-assignment randomized trial with a continuous longitudinal outcome

Nicholas J Seewald, ¹ ® Kelley M Kidwell, ² Inbal Nahum-Shani, ³ Tianshuang Wu, ⁴ James R McKay⁵ and Daniel Almirall ^{1,3}

Statistical Methods in Medical Research 0(0) 1–22 © The Author(s) 2019

Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0962280219877520 journals.sagepub.com/home/smm

\$SAGE

arXiv:1810.13094 [stat.ME]

Funding

This work was supported by the following awards from the National Institutes of Health: Ro1DA039901, P50DA039838, R01HD073975, R03MH097954, P01AA016821, RC1AA019092, U54EB020404. The content of this presentation is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

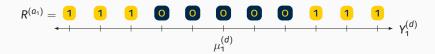
https:\\nickseewald.com

Extra Slides

1. Response is uncorrelated with products of first-stage residuals. For any $t_i \le t_j \le t^*$,

$$\mathsf{Cov}\left(R^{(a_1)}, \left(Y_{t_i}^{(d)} - \mu_{t_i}^{(d)}\right) \left(Y_{t_j}^{(d)} - \mu_{t_j}^{(d)}\right)\right) = \mathsf{O}$$

Intuition: If this is not true, the relationship between, say $Y_1^{(d)}$ and R might look like this:



Two Definitions of Response

$$R^{(a_1)} = \mathbb{1}\left\{ \left(Y_1^{(d)} \right)^2 > 4.7 \right\}$$

$$\bullet \quad \bullet \quad \text{Cov}\left(R^{(a_1)}, \left(Y_1^{(d)} - \mu_1^{(d)} \right)^2 \right) = 3.673$$

